Technological surveillance of energy efficiency in agricultural production systems: a systematic review
DOI:
https://doi.org/10.56183/soar.v7iEBOA7.39Keywords:
climate change, sustainability, S-curves, technological surveillanceAbstract
This document highlights Energy Efficiency (EE) in agricultural production systems through the analysis of the life-cycle of publications in Scopus database, along with the help of SigmaPlot and SciMAT software. Among the results obtained; the growth rate on publications was determined until 2019, with trends in EE research in the agricultural sector. According to the search formulas "energy efficiency" (LIMIT-TO (DOCTYPE, "ar)) and "energy efficiency AND agriculture" (LIMIT-TO (DOCTYPE," ar), which made visible the scientific projection according to the inflection point, as well as the most important motor issues, where those related to soil, water, climatic variability, crops, nitrogen and phosphorus are emphasized, being The United States the country with the greatest scientific dissemination in this regard. In addition, publications and institutions relevant to the case of Colombia were established through TAK ("energy efficiency" AND agriculture) AND (LIMIT-TO (AFFILCOUNTRY, "Colombia").
References
Aguilar, S., Avalos, A., Giraldo, D., Quintero, S., Zartha, J., & Cortes, F. (2012). La Curva en S como Herramienta para la Medición de los Ciclos de Vida de Productos. Journal of Technology Management & Innovation, 7(1), 238–248. https://doi.org/10.4067/S0718-27242012000100016
Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35, 869–890. https://doi.org/10.1007/s13593-015-0285-2
Álvarez-Jaramillo, J., Zartha-Sossa-JW, & Orozco-Mendoza, G. L. (2018). Barriers to sustainability for small and medium enterprises in the framework of sustainable development - Literature review. Business Strategy over the Industry Lifecycle, 28(4), 512–524. https://doi.org/10.1002/bse.2261
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Bojacá, C., Casilimas, H., Gil, R., & Schrevens, E. (2012). Extending the input e output energy balance methodology in agriculture through cluster analysis. Energy, 47(1), 465–470. https://doi.org/10.1016/j.energy.2012.09.051
Bojacá, C., & Schrevens, E. (2010). Energy assessment of peri-urban horticulture and its uncertainty: Case study for Bogota, Colombia. Energy, 35(5), 2109–2118. https://doi.org/10.1016/j.energy.2010.01.029
Casierra-Posada, F., Carreño-Patiño, A., & Cutler, J. (2017). Growth, Fiber and Nitrogen Content in Sisal Plants (Furcraea sp) Under NaCl Salinity. Gesunde Pflanzen, 69(2). https://doi.org/10.1007/s10343-017-0390-z
CEPAL. (2016). Agenda 2030 y los Objetivos de Desarrollo Sostenible Una oportunidad para América Latina y el Caribe. Santiago de Chile (Chile).
Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31(1), 91–118.
Cobo, M. J., López-Herrera, A., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/asi
ECLAC. (2018). Climate Change in America: Potential Impacts and Public Policy Options. Disponible en: www.cepal.org/en/suscripciones
García-Molano, J. (2016). Sistemas integrados de producción agraria sostenible. Conexión Agropecuaria JDC., 6(1), 6–10.
García-Parra, M. Á., & Plazas-Leguizamón, N. Z. (2019). Análisis del ciclo de vida de las publicaciones sobre la producción de quinua (Chenopodium quinoa Willd), a través de curvas en S. Revista De Investigación, Desarrollo E Innovación, 9(2), 379–391. https://doi.org/10.19053/20278306.v9.n2.2019.9189
García, C., Peña, Á., Betancourt, R., & Cardona, A. (2017). Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from. Journal of Environmental Management, 216, 160–168. https://doi.org/10.1016/j.jenvman.2017.04.029
García, J. (2006). Principios generales de la agricultura orgánica. (Vol. 1). Tunja (Boyacá): Fundación Universitaria Juan de Castellanos.
Gingrich, S., & Krausmann, F. (2018). At the core of the socio-ecological transition: Agroecosystem energy fluxes in Austria 1830 - 2010. Science of the Total Environment, 645, 119–129. https://doi.org/10.1016/j.scitotenv.2018.07.074
Gómez-Echeverri, L., Ríos-Osorio, L., & Eschenhagen, D. (2017). Propuesta de unos principios generales para la ciencia de la agroecología: una reflexión. Revista Lasallista de Investigación, 14(2), 212–219. https://doi.org/10.22507/rli.v14n2a20
Grajales-López, C. A., Zartha-Sossa, J. W., Hernández-Zarta, R., Estrada-Reveiz, R., Guarnizo-Gómez, C. A., Díaz-Uribe, J. H., & Gómez-Garcés, J. (2016). Vigilancia Tecnológica y Análisis del Ciclo de Vida de la Tecnología: Revisión de herramientas para el diagnóstico empresarial y la aplicación del ciclo de vida del producto en el sector turismo. Espacios, 37(36), 1–18.
Hamidov, A., Helming, K., Bellocchi, G., Bojar, W., Roggero, P. P., Rusu, T. & Schönhart, M. (2018). Impacts of climate change adaptation options on soil functions: A review of European case ‐ studies. Land Degradation and Development, 29(8), 2378–2389. https://doi.org/10.1002/ldr.3006
Harchaoui, S., & Chatzimpiros, P. (2018). Can agriculture balance its energy consumption and continue to produce food? A framework for assessing energy neutrality applied to French agriculture. Sustainability, 10(4624), 2–14. https://doi.org/10.3390/su10124624
Harvey, C. A., Saborio-Rodríguez, M., Martinez-Rodríguez, R., Viguera, B., Chain-Guadarrama, A., Vignola, R., & Alpizar, F. (2018). Climate change impacts and adaptation among smallholder farmers in Central America. Agriculture & Food Security, 7(57), 1–20. https://doi.org/10.1186/s40066-018-0209-x
Hoffman, A. J. (2005). Climate Change Strategy: The Business Logic behind Voluntary Greenhouse Gas Reductions. California Management Review, 47, 21–46. https://doi.org/10.2307/41166305
Kabir, M. J., Alauddin, M., & Crimp, S. (2017). Farm-level adaptation to climate change in Western Bangladesh: An analysis of adaptation dynamics, profitability and risks. Land Use Policy, 64, 212–224. https://doi.org/10.1016/j.landusepol.2017.02.026
Kalasin, K., Cuervo-Cazurra, A., & Ramamurti, R. (2019). State ownership and international expansion: The S-Curve relationship. Global Strategy Journal. https://doi.org/10.1002/gsj.1339
Kmoch, L., Pagella, T., Palm, M., & Sinclair, F. (2018). Using Local Agroecological Knowledge in Climate Change Adaptation: A Study of Tree-Based Options in Northern Morocco. Sustainability, 10(3719). https://doi.org/10.3390/su10103719
Korres, N. E., Norsworthy, J. K., Tehranchian, P., Gitsopoulos, T. K., Loka, D. A., Oosterhuis, D. M., … Palhano, M. (2016). Cultivars to face climate change effects on crops and weeds: a review. Agronomy for Sustainable Development, 36, 12. https://doi.org/10.1007/s13593-016-0350-5
Krebs, J. (2018). Permaculture - Scientific Evidence of Principles for the Agroecological Design of Farming Systems. Sust, 10(3218), 1–24. https://doi.org/10.3390/su10093218
Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the U. S. great plains agricultural production. Scientific Reports, 8(3450), 1–18. https://doi.org/10.1038/s41598-018-21848-2
Marengo, J., Boulanger, M., Buckeridge, M., Castellanos, E., Poveda, G., Scarano, F., & Vicuña, S. (2014). Central and South America. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. 1499-1566p. Disponible en: https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap27_FINAL.pdf
Martinez, R., & Forero, E. (2018). Estimation of energy efficiency in solar photovoltaic panels considering environmental variables. IOP Conference Series: Materials Science and Engineering paper, 437, 1–15. https://doi.org/10.1088/1757-899X/437/1/012008
Méndez-Rodríguez, C., Rengifo-Rodas, C., Corrales-Muñoz, J., & Figueroa-Casas, A. (2019). A multi-criteria approach for comparison of environmental assessment methods in the analysis of the energy efficiency in agricultural production systems. Journal of Cleaner Production, 228, 1464–1471. https://doi.org/10.1016/j.jclepro.2019.04.388
Moore, F. C., Baldos, U., Hertel, T., & Diaz, D. (2017). agriculture implies higher social cost of carbon. Nature Communications, 8(1607), 1–9. https://doi.org/10.1038/s41467-017-01792-x
Ochoa, K., Carrillo, S., & Gutierrez, L. (2014). Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia) Energy efficiency procedures for agriculture. IOP Conference Series: Materials Science and Engineering, 59, 1–9. https://doi.org/10.1088/1757-899X/59/1/012008
Ojeda, K., Sánchez, E., & Kafarov, V. (2011). Sustainable ethanol production from lignocellulosic biomass e Application of exergy analysis. Energy, 36(4), 2119–2128. https://doi.org/10.1016/j.energy.2010.08.017
Plazas-Leguizamón, N., & García-Molano, J. (2014). Los abonos orgánicos y la agremiación campesina: Una respuesta a la agroecología. Biotecnología En El Sector Agropecuario y Agroindustrial, 12(2), 170–176.
Plazas-Leguizamón, N, & Garcia-Parra, M. (2017). Empoderamiento de las comunidades rurales a través de la proyección social del conocimiento. Cultura Científica., 15(1), 124–133.
Plazas-Leguizamón, N, & Jurado-Álvarez, C. (2018). Eficiencia energética con los ciclos naturales. In Texto y contexto en el desarrollo sostenible (Wydawnictw, pp. 77–89). Polonia.
Rasul, G. (2016). Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia. Environmental Development, 18, 14–25. https://doi.org/10.1016/j.envdev.2015.12.001
Reguera, M., Conesa, C. M., Gil-Gómez, A., Haros, C. M., Pérez-Casas, M. Á., Briones-Labarca, V., Bascuñán-Godoy, L. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 14(6), 1–20. https://doi.org/10.7717/peerj.4442
Rodríguez-Bolívar, M. P., Alcaide-Muñoz, L., & Cobo, J. M. (2018). Analyzing the scientific evolution and impact of e-participation research in JCR journals using science mapping. International Journal of Information Management, 40, 111–119. https://doi.org/10.1016/j.ijinfomgt.2017.12.011
Santika, W. G., Anisuzzaman, M., Bahri, P. A., Shafiullah, G. M., Rupf, G. V, & Urmee, T. (2019). Science from goals to joules: A quantitative approach of interlinkages between energy and the Sustainable Development Goals. Energy Research & Social Science, 50, 201–214. https://doi.org/10.1016/j.erss.2018.11.016
Schilling, M. A., & Esmundo, M. (2009). Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government. Energy Policy, 37(5), 1767–1781. https://doi.org/10.1016/j.enpol.2009.01.004
Smith, L. G., Williams, A. G., & Pearce, B. D. (2014). The energy efficiency of organic agriculture: A review. Renewable Agriculture and Food Systems, 30(3), 280–301. https://doi.org/10.1017/S1742170513000471
Suárez, E., Mosquera, T., & Castillo, S. (2018). Empowerment and associative process of rural women: a case study of rural areas in Bogotá and Cundinamarca, Colombia. Agronomía Colombiana, 36(2), 158–165. https://doi.org/10.15446/agron.colomb.v36n2.66927
Tobón, M., Zarta, R., Zartha, J. W., Estrada, R., Díaz, J., & Gómez, J. (2017). Vigilancia tecnológica y análisis del ciclo de vida de la tecnología: técnicas de evaluación de la usabilidad, métricas y herramientas en el sector TICs Technological surveillance and technology life cycle analysis: Espacios, 38(22), 1–28.
Tran, T., Da, G., Moreno-Santander, M., Vélez-Hernández, G., Giraldo-Toro, A., Piyachomkwan, K. & Dufour, D. (2015). A comparison of energy use, water use and carbon footprint of cassava starch production in Thailand, Vietnam and Colombia. Resources, Conservation and Recycling, 100, 31–40. https://doi.org/10.1016/j.resconrec.2015.04.007
Villabona, Y., & Kafarov, V. (2018). Methodology for the Life Cycle Assessment (LCA) in Combustion Processes Where the Fuel is Pelleted Agricultural Biomass. Chemical Engineering Transactions, 64(1), 427–432.
Wezel, A., Casagrande, M., Celette, F., Vian, J., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7
Woods, J., Williams, A., Hughes, J. K., Black, M., & Murphy, R. (2010). Energy and the food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2991–3006. https://doi.org/10.1098/rstb.2010.0172
Zartha, J. W., Palop, M., Arango, B., Vélez, F. M., & Avalos, A. F. (2016). S Curve analysis and technology life cycle. Application in series of data of articles and patents. Espacios, 37(7), 1–19.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Miguel García-Parra, Nubia Plazas-Leguizamón, Ramiro Andres Colmenares-Cruz, Nidia Milena Moreno-López, Andrea Isabel Barrera-Siabato
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.